首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   2902篇
  免费   120篇
  国内免费   316篇
林业   245篇
农学   432篇
基础科学   76篇
  569篇
综合类   1097篇
农作物   475篇
水产渔业   9篇
畜牧兽医   164篇
园艺   230篇
植物保护   41篇
  2024年   5篇
  2023年   47篇
  2022年   64篇
  2021年   73篇
  2020年   65篇
  2019年   56篇
  2018年   53篇
  2017年   100篇
  2016年   136篇
  2015年   111篇
  2014年   130篇
  2013年   201篇
  2012年   190篇
  2011年   250篇
  2010年   200篇
  2009年   221篇
  2008年   201篇
  2007年   230篇
  2006年   184篇
  2005年   139篇
  2004年   100篇
  2003年   83篇
  2002年   60篇
  2001年   58篇
  2000年   40篇
  1999年   48篇
  1998年   33篇
  1997年   33篇
  1996年   40篇
  1995年   30篇
  1994年   29篇
  1993年   31篇
  1992年   19篇
  1991年   11篇
  1990年   9篇
  1989年   12篇
  1988年   18篇
  1987年   15篇
  1986年   5篇
  1985年   3篇
  1984年   1篇
  1978年   2篇
  1963年   2篇
排序方式: 共有3338条查询结果,搜索用时 218 毫秒
81.
Plants colonized by arbuscular mycorrhizal (AM) fungi have been shown to respond positively to the application of insoluble forms of inorganic phosphorus (P) such as rock phosphates (RPs). The mechanism(s) underlying such responses remain(s) unknown and although it has been hypothesized, there is no experimental support for the production of chelating agents by AM fungal hyphae. Here we investigate whether AM fungi can solubilize P from RPs and transfer it to plant roots. Using root-organ cultures of Daucus carrota L. inoculated or not with Glomus intraradices Schenk & Smith and containing P from different RP sources, we predicted that: (1) roots inoculated with G. intraradices would take up more P than those uninoculated; that (2) the amount of P taken up by roots through G. intraradices would be positively correlated with the RP reactivity; and that (3) G. intraradices would have access to RP through localized alterations of pH and/or by the production of organic acid anions that may act as chelating agents. The RP reactivity was positively correlated with P uptake. However, mycorrhizal roots grew initially slower and did not respond differently to any P treatment than those uninoculated. There was no evidence of localized changes in pH in proximity of G. intraradices hyphae, indicating that responses to RP by mycorrhizal plants observed in previous studies do not appear to result from the release of H+ ions alone or in combination with organic acid anions.  相似文献   
82.
黄土丘陵区须根系作物地土壤分离季节变化研究   总被引:2,自引:0,他引:2  
郁耀闯  王长燕 《土壤》2016,48(5):1015-1021
采用变坡试验水槽的试验方法,研究了黄土丘陵区典型须根系作物玉米和谷子在生长季土壤分离能力的季节变化及潜在影响因素。结果表明:在作物生长季,须根系作物玉米地和谷子地的土壤分离能力具有明显的季节变化(P0.05),并表现出了相似的季节变化模式;两种作物地土壤分离能力的季节变化主要受到农事活动、土壤硬化、水稳性团聚体和作物根系生长的影响;两种作物地的土壤分离能力可以用土壤粘结力、作物根系密度和水流剪切力很好地拟合(R~20.75,NSE0.74)。  相似文献   
83.
Colonisation by root endophytes can be beneficial to plants growing on acid, nutrient-poor soils. Arbuscular mycorrhizal (AM) fungi can supply herbs with nutrients and may give protection against aluminium toxicity. Two other root colonising fungi, fine endophytes (FE) and dark septate fungi (DSE), are less well known but are potentially of benefit to their host plant. AM fungi are the most prevalent symbionts in herbs at neutral to acidic soil pH. At extremely low pH, fungal growth can be limited and AM colonisation is usually rare. Fine and dark septate endophytes, on the other hand, have been observed more often under these conditions. In order to relate endophyte colonisation to a gradient in soil pH, we investigated root colonisation by AM, FE and DSE in Maianthemum bifolium, Galium odoratum, Mercurialis perennis and Stellaria nemorum, from a range of acidic beech forests. With decreasing pH, colonisation by AM decreased, whereas the other two endophytes increased. AM and FE colonisation were inversely correlated in Maianthemum bifolium. We compared changes in root colonisation with those in chemical composition of soil and leaf samples and found a positive correlation between leaf magnesium concentrations and the presence of DSE in Galium odoratum. Aluminium concentration in Maianthemum bifolium tended to be lower when FE colonisation was high, suggesting a possible role for the fungi in plant protection against Al. We suggest that FE and DSE may replace AM fungi in herbaceous vegetation at extremely low pH, counteracting some of the negative effects of high soil acidity on plants.  相似文献   
84.
冬小麦根系对施肥深度的生物学响应研究   总被引:11,自引:0,他引:11  
施肥深度对冬小麦根系分布及后期衰老影响的根管栽培试验结果表明,施肥深度可改变不同土体中小麦根重及根系活性,较深层次(50~100cm)施肥有利于小麦根长增加和下层土壤中根重及根系活性的提高,同时可增加旗叶叶面积和净光合率,并使小麦根系SOD和POD活性保持较高水平,抑制过氧化产物MDA的产生,延缓根系及旗叶衰老,明显提高小麦产量。施肥过深(150cm)虽能诱导根系下扎,但小麦总根重和产量却均有所下降。  相似文献   
85.
大气CO2浓度升高对植物 土壤系统地下过程影响的研究   总被引:15,自引:4,他引:15  
马红亮  朱建国  谢祖彬 《土壤》2003,35(6):465-472
综述了大气CO2浓度升高对根系、根际、根系分泌物、土壤呼吸和土壤物质转化和C、N循环影响的研究进展,阐述了有关实验的研究情况,以及它们在整个生态系统响应大气CO2浓度升高中的重要作用、目前研究中存在的争论、以及还需要研究的领域和方向及其研究的重要性。  相似文献   
86.
土壤-烤烟矿质营养元素相互关系的主组分分析   总被引:19,自引:2,他引:19       下载免费PDF全文
对云南五种植烟土壤上烤烟三个品种、六个生育期烟叶中钾、磷、硫、钙、镁、铁、锰、锌、铜、硼浓度和烟株根区土壤中AB/D联合提取的养分含量及土壤pH、有机质和碱解氮的测试数据,用主组分分析(PCA)方法,讨论土壤─烤烟系统矿质营养元素的相互关系及交互作用。结果显示:①烟叶矿质营养元素浓度随烤烟生育期有规律的变化,受根区土壤化学性质影响的变异大于品种间的差异;②烟叶钾、磷、铜、硼表现明显的稀释效应,钙、镁表现积累效应;③烤烟钾、磷、铜、硼营养存在相互协同作用,钙对钾、磷、铜、硼营养有明显的拮抗作用。④增加土壤有机质,利用钾、磷、铜、硼的协同作用,减轻钙对钾、磷、硼的拮抗是改善烤烟营养,提高烤烟产量品质的关键之一。  相似文献   
87.
A control soil stored at 4°C was analyzed 38 times by fumigation-extraction during a period of 11 months to correct for variations caused by the analytical procedure. The difference in extractable C between fumigated and unfumigated samples oscillated around the average without a positive or negative trend. When data from contemporaneously extracted field samples were corrected with control soil data the variations were lowered. The deviations between corrected and uncorrected biomass C values had maxima of ±12%. Data obtained for seven dates using pre-extraction, wet-sieving, and centrifuging were compared with data obtained by the conventional procedure without any pretreatment. A negative difference from data obtained without pretreatment was found when the soil water content was decreased to 6%. The largest positive difference (+38%) was found in May during the period of highest root growth.  相似文献   
88.
The concentrations of organic C, labile organic fractions and the size and activity of the microbial community were measured to a depth of 30 cm below the plant row and at distances of 30 and 60 cm into the inter-row area under sugarcane under pre-harvest burning or green cane harvesting with retention of a crop residue (trash) mulch. Total root mass was similar under burning and trashing but under trashing there was a redistribution of roots towards the surface 0-10 cm in the inter-row space as roots proliferated beneath the trash mulch. Soil organic C content decreased in response to both increasing distance from the plant row (to a depth of 20 cm) and burning rather than trashing (to a depth of 10 cm). Declines in K2SO4-extractable C, light fraction C, microbial biomass C, basal respiration and aggregate stability in response to distance and burning were much more marked than those for organic C and occurred to a depth of 30 cm. Bulk density was greater under burnt than trashed sugarcane and was greater in the inter-row than row, particularly under burning. Heterotrophic functional diversity (measured by analysis of catabolic response profiles to 36 substrates) was also investigated. Principal component analysis of response profiles demonstrated that soils below the row and those under trashing at 30 cm out from this row were separated from the other soils on PC1 and the sample from the inter-row centre (60 cm out) under burning was separated from the others on PC2. Catabolic evenness was least for the latter soil. It was concluded that soil in the inter-row of burnt sugarcane receives few inputs of organic matter and that conversion to green cane harvesting with retention of a trash mulch greatly improves the organic matter, microbial and physical status of the inter-row soil.  相似文献   
89.
We studied the effects of the root endoparasitic nematode Heterodera trifolii on rhizodeposition and the root architecture of white clover (Trifolium repens). Rhizosphere solutions were collected from the root systems of plants growing with and without H. trifolii (200 juveniles per inoculated plant) in sand-based microlysimeters. The organic carbon (C) content of these solutions was analyzed, and they were applied to plant-free soils to investigate microbial responses. Although plant biomass was unaffected by nematodes, the architecture of the root systems was significantly altered, with a decrease in overall root length and an increase in the density of lateral branches from the primary root. The presence of nematodes reduced the concentration of organic compounds in the rhizosphere solutions but only on the final sampling date (75 days). Analysis of microbial signature phospholipid fatty acids revealed no change in the structure of the microbial communities in soils to which rhizosphere solutions were applied. However, these microorganisms did respond with changes in substrate utilization patterns (community-level physiological profiles). Microbes in soils that received rhizosphere solutions from the nematode-infected clover showed lower utilization of most substrates but higher utilization of oligosugars. These responses appear to be related to changes in roots and rhizodeposition associated with nematode infection of clover roots. The results of this study suggest that root herbivory can negatively impact carbon-limited soil microbial communities via changes in root architecture that moderate rhizodeposition.  相似文献   
90.
Organic acids may play a key role in rhizosphere and pedogenic processes. The effects of young trees and ectomycorrhizas on the soil solution concentrations of low molecular weight organic acids (LMWOAs) were studied in soil columns (E horizon) in the presence or absence of Pinus sylvestris and Picea abies with or without three ectomycorrhizal fungi. Several LMWOAs were identified at concentrations ranging from <0.1 to 11 μM. Compared to soil columns without tree seedlings, the presence of non-mycorrhizal or mycorrhizal tree seedlings sometimes resulted in small but statistically significant increases in citrate, formate, malonate and oxalate concentration. The general nutrient concentration and low P had little short-term effect on soil solution organic acid concentrations. The results suggest that biodegradation rather than production may be the major factor regulating soil solution organic acid concentrations.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号